Scale and Resize Your Access
Forms

Access 2000 Developer’s Handbook, Volume I (Sybex)
Ken Getz, Paul Litwin, and Mike Gilbert
ISBN: 0-7821-2370-8

This is version 1.0.0 of this document.

Because so many Access developers need this functionality, we’ve
decided to release a protected version of the form resizing code that’s
available as part of Access 2000 Developer’s Handbook, VVolume I.
Included in this package you’ll find a number of files:

» This document, in PDF format.
» ADHResize2K.MDE (the version for Access 2000)
» ADHResize97.MDE (the version for Access 97)

» ADHResizeTest2K.MDB (a sample database for Access
2000)

» ADHResizeTest97.MDB (a sample database for Access 97)

You are free to use and distribute this MDE file with any Access
2000 or Access 97 application you create. You may not, however, take the
existence of these MDE files as giving you the right to distribute freely the
original source code, should you happen to have purchased a copy of its
original source (Access 2000 Developer’s Handbook, Volume I). The
copyright issues involved in distributing the code from the book still
apply—see the book’s Introduction for more information.

This document explains, in some detail, how to make use of the
resizing code in the MDE files. Note that the Access 97 version of this
MDE uses the same technology as the Access 2000 version—in other
words, if you’re currently using code from the Access 97 Developer’s

Scale and Resize Your Access Forms Page 1
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

Handbook, you’ll need to call this code differently, and it will behave
slightly differently.

WARNING: This document and the associated code, are provided
completely without warranty, support, or other claims. That is, although
you cannot harm your application directly using this tool, it’s possible that
it may crash, or otherwise cause your application to stop, just as with any
other piece of code in Windows. Under no circumstances will the authors,
book publisher (Sybex) or anyone else associated with this tool be liable for
any damage, actual or construed, that occurs because of, or appears to occur
because of, this tool. Here is the standard Sybex disclaimer, which applies
to this code just as it applied to the code for the entire book:

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied,
with respect to this media or its contents, its quality, performance,
merchantability, or fitness for a particular purpose. In no event will
SYBEX, its distributors, or dealers be liable to you or any other party for
direct, indirect, special, incidental, consequential, or other damages arising
out of the use of or inability to use the media or its contents even if advised
of the possibility of such damage. (We have to include this, just in case
some crazy person decides that the loss of their data is somehow our fault.
It’s not.)

Automatically Resizing Forms

If all you are about is how to use the resizing code, you can jump directly to
the section titled “Using FormResize”, later in this article. If you want to
know why and how it all works. continue reading.

When you set up Windows to run on your computer, you must choose a
screen driver for use with your hardware. Your choice of screen driver
allows your monitor to display a specific screen resolution, usually
640x%480 (standard VGA), 800%600 (Super VGA), 1024x768 (XGA, Super
VGA, or 8514/a), or 1280x1024. These numbers refer to the number of
picture elements (pixels) in the horizontal and vertical directions.

Scale and Resize Your Access Forms Page 2
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

If you create forms that look fine on your screen running at
1024x768, those same forms may be too large to be displayed by a user
who’s working at 640x480. Similarly, if you create forms at 640x480,
someone working at 1280x1024 will see them as very small forms. (A full-
screen form created at 640x480 takes up about a quarter of the screen at
1280x%1024—although this is not necessarily something your users will
want to change. Many people who use large displays and high-resolution
adapters appreciate the fact that they can see not only a full-screen form,
but other Access objects at the same time.)

One unattractive solution to this problem is to create multiple
versions of your forms, one for each screen resolution you wish to support.
This, of course, requires maintaining each of those forms individually. The
following sections deal directly with the resolution issue. We present a
class module you can use to scale your forms as they load, allowing them to
look reasonable at almost any screen resolution. In addition, once you’ve
solved the original problem, it’s not difficult to extend this so the code
allows users to resize a form and all its controls at runtime.

The sample form, frmScaleTest, demonstrates the technique of
resizing a form to fit your screen resolution at load time. It also allows you
to resize all the controls on the form as you resize the form. To try this out,
load the form and try it out. Figure 1 shows a “mocked-up” image,
containing the same form displayed at two different sizes at once. If you
want to see now what’s involved in making this happen, open frmScaleTest
in Design view and check out the code in its module. Most of what you find
there is comments—it takes very little effort on your part to get forms to
scale. Basically, you must instantiate an object, set a property or two, and it
works.

Scale and Resize Your Access Forms Page 3
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

& Form Scaling Test =10l =]

Form Header
¥ Scale Contrals? ——————————————— Option Grougp

AL EBBB
¥ Seals Columns? & Option Button A | [siels3 oD
IV Scale Fonks? EE Fe
Check Box 5 GGG HHH

n paN)
KKK LLL

[~ |
Blbtbed MMM
Form Header Page 1 |page 2 000 PRP
QeQ RRR
Button |

53 T

Group on SubForm _=en
B3 Form Scaling Test M=l
2 Option 1 Form Heaser
& Option 2 — .
e o oreniam &
ko
. .
a1
r
B

Anather SubFarm

FirstName LastName -
B | Thomas Bob
Reddick. Greg

Stevens Ken

Jones Jemy
Smith tyma ;I

P | Thomas =
»

I

All the Way at the Bottom o

Figure 1: Two instances of the same form, one at full size
and the other scaled to a smaller size

Understanding Screen Resolutions

Before you can understand the solution to the screen resolution issue, you
must understand the problem. Figure 2 shows a scale image of the four
standard Windows screen resolutions, superimposed. As you can see, a
form that appears full screen at 640x480 will take up only a small portion
of a 1280x1024 screen, and a full-screen form at 1024x768 will be too
large for a screen at 800x600.

Scale and Resize Your Access Forms Page 4
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

08t

009

892

ﬁ 640

A
L 800 u
N 1024 »
N ‘

20T

k 1280 ‘J

Figure 2: All four standard screen resolutions,
superimposed.

The difference in the number of pixels is only one of two issues you
need to consider in scaling forms. You must also think about the size of the
pixels—the number of pixels per logical inch of screen space. Each screen
driver individually controls how large each pixel is in relation to what
Windows thinks an “inch” is. Windows provides API calls to gather all this
information, which we’ll need later in this section. For now, the
information of concern is the number of twips per pixel. (A twip is
equivalent to 1/1440 inch.) Practical experience shows that screens at
640x480 use 15 twips per pixel, and all other VGA screen resolutions use
12 twips per pixel (although this isn’t a requirement, nor is it always true).
This means that at low-resolution VGA, 100 pixels take up 1500 twips (a
little more than one logical inch), while at higher resolutions, 100 pixels
take up 1200 twips (a little less than one logical inch). Therefore, to
correctly scale your forms for different resolutions, you need to take both
ratios into account. You need to compare, for both the screen on which the
form was prepared and the screen on which it will be displayed, the pixels
used and the twips-per-pixel value. The ratios of these values control how
you scale the form.

The resizing tool includes the code necessary to scale your forms at
load time and to allow resizing by users at run time. This code makes

Scale and Resize Your Access Forms Page 5
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

extensive use of Windows API calls to retrieve information about the
current display and the sizes of forms.

Scaling Forms as They Load

To solve the problem of displaying forms so that they take up the same
proportion of the screen real estate on different screen resolutions, it would
seem that all you need do is calculate the ratio of the original screen
dimensions to the current screen dimensions and scale the form
accordingly. Unfortunately, the calculation is further complicated by the
twips-per-pixel issue. Because different screen resolutions use a different
number of twips for each pixel, you must also take this into account when
calculating the new size for the form. The x-axis sizing ratio, when moving
from 640x480 to 1024x768, is not just 1024/640. You must multiply that
value by the ratio of the twips-per-pixel values. (Think of it this way: as far
as Windows is concerned, pixels are “bigger” at 640x480. At higher
resolutions, a pixel takes up fewer twips.) Figure 3 shows a single form,
400x120 pixels, created in 640x480 resolution, as it would display on a
screen in 1024x768 resolution. The first example shows it unscaled, and the
second example shows it scaled.

Scale and Resize Your Access Forms Page 6
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

[OCT »

0P —»|

— 160 —W

4 320 »

P
4

I 120

[]
'Y
4—320%5

1024

891444444i:;7

< 07T ¥

0b7 —»|

— 160 —¥™

— 320 >

ost

U

< 6T ¥

256 —

4—— 512

P8 ——»

<

1024

89[444444i:;7

~ 640

N

U

Figure 3: Scaling a form causes it to appear
approximately the same on screens with different

resolutions.

Necessary Information

To correctly scale your form, the code needs to know the screen resolution
at which you created your form (so it can calculate the ratios between the
screen widths and heights). It also needs to know the logical dots-per-inch
values for the vertical and horizontal dimensions of the screen where you
created the form. You may know offhand the screen resolution you use on
your development machine, but you’re unlikely to know the logical dots-
per-inch values. Therefore, we’ve provided the frmScreeninfo form, shown
in Figure 4. This form has one purpose in life: it provides information about
your current screen settings so you can correctly call the SetDesignCoords

method described below.

Scale and Resize Your Access Forms

From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8
by Ken Getz, Paul Litwin, and Mike Gilbert
©Sybex, Inc. All rights reserved.

Page 7

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

B Screen Information

Width: 1024 oTd
Heighk: 40 | 2000 —
¥ Logical DPT: |96
W Logical DPT: |96

Ilse this procedure call:
|Ca|| frmResize, SetDesignCoords{ 1024, 740, 96, 96)

Figure 4: Use frmScreeninfo to calculate necessary
screen coordinate information.

The code in this form’s class module calculates the current size of
the screen, taking into account the area chewed up by taskbars docked to
the edges of your screen. It also calculates the logical dots-per-inch values
and formats the method call as you’ll need for your form. Once you’ve run
this form, cut the value in the text box to the clipboard and paste it into
your form’s Open event procedure code. (The frmScreenInfo form does
assume that you’ve named your FormResize variable as frmResize. If you
change that name, you’ll need to modify the method call, as well.)

< The information form, frmScreeninfo, takes taskbars into
account when it calculates the screen resolution. If your
users don’t display their taskbars, you might want to set all
taskbars on your system to be hidden when not in use.
(Usually, this is the AutoHide property for the application.)
That way, at worst, your form will scale too small (if you
don’t show taskbars but users do).

Using FormResize

From your application’s perspective, the FormResize class manages all the
scaling of your form and its controls. Once you’ve set up a connection
between your form and its “shadow” FormResize object, the code in the
class module handles all the work for you.

Scale and Resize Your Access Forms Page 8
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

< |If you're using Access 97, replace all the file names with
the appropriate Access 97 version (ADHResize97.MDE, in
this case).

Before you can use the code in this MDE, you’ll need to set a
reference to the appropriate MDE file. To do that, follow these steps:

1. Open a module in Design view.

2. Use the Tools|References menu from within VBA to open the
References dialog box.

Click the Browse button.

From the Files of type: combo box, select MDE files. (If this
isn’t available in your version, type *.MDE in the File Name
text box.)

5. Search for the location where you placed
ADHResize2K.MDE, and select it once you find it. (Click the
Open button on the Add Reference dialog box, once you’ve
found the file.)

6. Back in the References dialog box, make sure that the
ADHResize2K file is selected, then click OK.

é Be careful about references. Just like any other Access
reference, you'll have problems if you move the MDE file,
or when you deploy the whole application. Make sure you
understand how Access handles external references
(documented and discussed in “Access 2000 Developer’'s
Handbook, Volume I” and in online help) before deploying
an application that uses an external component.

In order to hook up your form, you’ll need to add a little code to the
form’s module. You must, at least, follow these steps (if you’re using
Access 97, replace ADHResize2K with ADHResize97, wherever you see
the reference):

1. To the form module’s Declarations area, add a variable
declaration for the FormResize object. Most likely, you’ll want it
to be Private:

Scale and Resize Your Access Forms Page 9
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

Private frnmResi ze As ADHResi ze2K. For nResi ze

2. In the form’s Open event procedure, you must instantiate the
FormResize object, and tell the object which form to shadow:
Private Sub Form Qpen()
Set frnResize = ADHResi ze2K. Cr eat eFor nResi ze

Set frmResi ze. Form = Me
End Sub

Why call CreateFormResize, instead of using “As New”? Because
the FormResize class exists in a referenced library, it’s difficult (and the
technique is undocumented) to create a public, creatable class. To work
around this, ADHResize2K.MDE includes a class whose only purpose in
life is to return a reference to one of the FormResize objects.

If you go no further than that, your form:

» Will not perform scaling at load time. That is, it will not
redimension itself to fit a changed screen resolution. (See the
ScaleForm property in Table 1.)

* Will resize all its controls in reaction to the user resizing the
form’s border. (See the ScaleControls property in Table 1.)

» Will scale fonts for text box, combo box, list box, label,
command button, toggle button, and tab controls so that they’ll
appear correctly in resized controls. (See the ScaleFonts property
in Table 1.)

e Will scale columns in multicolumned list and combo box
controls. (See the ScaleColumns property in Table 1.)

If you want to allow the form to scale its size, position, and contents
at load time, based on its original design-time dimensions, you need to take
one extra step: you must call the SetDesignCoords method of the
FormResize object, indicating the screen size and dots/inch ratios on your
design machine. As discussed in the “Necessary Information” section
above, you can use the sample form frmScreenlInfo to retrieve information
about your screen, as you create your form. With this step added, your
Open event procedure might look like this:

Private Sub Form Open()

Set frnResize = ADHResi ze2K. Cr eat eFor nResi ze()
Set frnResize. Form= M

Call frnResize. Set Desi gnCoords(1280, 1024, 96, 96)
End Sub

Scale and Resize Your Access Forms Page 10
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

& One of the benefits of using a class module to contain all
this code (besides the fact that it allows the code to react to
events of your form) is that you can attach the FormResize
class to as many forms as you like, open them all at once,
and have each form scale and resize individually. Although
VBA loads multiple copies of the data—that is, each
instance of the FormResize class in memory has its own
property values—it only loads a single copy of the code.
Using this technique is efficient and makes coding easier.

Working with FormResize Properties

Once you’ve set up the code, as in the previous section, you can
programmatically control the behavior of the FormResize object. By setting
various properties of the object, you can retrieve information about the
form, make the form resize in just the way you want, or control the state of
the form. Table 1 lists all the properties of the FormResize object, and
Table 2 lists the public methods of the object. Some of these properties are
somewhat subtle. (Properties and methods marked in bold are new for this
version—that is, they don’t exist in the code provided in the Access 2000
Developer’s Handbook, VVolume 1.) For example:

» The Controls property returns a collection of ControlResize
objects. Each of these objects has a Control property, which
returns a reference to the control being shadowed. Although you
can work through the FormSize’s Controls collection to get to a
particular control on your form, you’re better off using the form’s
Controls collection instead. You’ll generally only touch three
properties of a ControlResize object: Scalelt, Floatlt, and Sizelt,
described in the next section.

» The four Scale... properties (ScaleColumns, ScaleControls,
ScaleFonts, ScaleForm) allow you to control various behaviors of
the form’s resizing. All these properties are Boolean values
except the ScaleControls property, which has three possible
values: scYes, scNo, and scAtLoad. Choosing scAtLoad tells the
FormResize class to scale controls at load time only, and then
never again. This option is useful if you want to make sure your

Scale and Resize Your Access Forms Page 11
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

form displays correctly at load time, resizing the form and its
controls based on the screen resolution, but from then on, you
want to keep the controls the size they were at load time.

e The MaxWidth, MaxHeight, MinWidth, and MinHeight
properties allow you to set minimum and maximum sizes for the
form. Using these properties (all measured in twips), you can
specify the range of sizes for your form. In addition, if you
specify values less than 1 (that is, fractional values) the code
interprets these as indicating fractions of the available space.
That is, if you specify a MinWidth property of 0.25, the form will
never be allowed to be narrower than one-fourth of the client area
(or the screen, if it’s a pop-up form). (If you need to convert from
twips to pixels, or back, you can use the TwipsPerPixelX and
TwipsPerPixelY properties.)

The following sample code sets up many of the form FormResize
properties (some of these are redundant—they’re setting values to match
the defaults):

Private Sub Form Qpen(Cancel As Integer)
Set frnResi ze = ADHResi ze2K. Cr eat eFor nResi ze()
Set frmResize. Form = M
Call frnResize. Set Desi gnCoords(991, 721, 96, 96)
frmResi ze. Scal eFonts = True
frmResi ze. Scal eForm = True
frmResi ze. Scal eCol utms = True
frmResi ze. Scal eControl s = scYes
frmResi ze. M nWdth = 0.
frmResi ze. MaxWdth = 0
frnResi ze. M nHei gh
frnResi ze. MaxHei gh
End Sub

Table 1: FormResize Properties

PROPERTY TYPE DESCRIPTION

CenterOnOpen | Boolean Center the form when it’s opened.
Works around conflicts that occur when
you turn on the AutoCenter property—
you really can’t use that property here.
(New in this version—not in the book.)

Controls Collection (Read-only) Collection of ControlResize

Scale and Resize Your Access Forms Page 12
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

objects contained within the FormResize
object. Generally, you won’t need to
work with this collection, but it’s
available for your convenience. Under
no circumstances should you add or
delete anything from this collection in
your code.

Form

Form

Sets or retrieves the reference to the real
form that the FormResize class is
associated with. No other properties or
methods will work correctly until you’ve
set this property.

HeightInTwips

Long

(Read-only) Returns the current height,
In twips, of the associated form.

IsMaximized

Boolean

Sets or retrieves the maximized state of
the associated form. Set the property to
True in order to programmatically
maximize the form.

IsMinimized

Boolean

Sets or retrieves the minimized state of
the associated form. Set the property to
True in order to programmatically
minimize the form.

MaxHeight

Single

Sets or retrieves the maximum height of
the associated form. If greater than 1,
specifies the maximum height in twips.
If less than or equal to 1, specifies the
percentage of the available space to fill
(the MDI client for normal forms, the
screen for pop-up forms).

MaxWidth

Single

Sets or retrieves the maximum width of
the associated form. If greater than 1,
specifies the maximum width in twips. If
less than or equal to 1, specifies the
percentage of the available space to fill
(the MDI client for normal forms, the
screen for pop-up forms)

MinHeight

Single

Sets or retrieves the minimum height of
the associated form. If greater than 1,

Scale and Resize Your Access Forms
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

Page 13

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

specifies the minimum height in twips. If
less than or equal to 1, specifies the
percentage of the available space to fill
(the MDI client for normal forms, the
screen for pop-up forms).

MinWidth Single

Sets or retrieves the minimum width of
the associated form. If greater than 1,
specifies the minimum width in twips. If
less than or equal to 1, specifies the
percentage of the available space to fill
(the MDI client for normal forms, the
screen for pop-up forms).

ScaleColumns Boolean

Set to False to disable scaling of column
widths within combo and list boxes (the
default value is True).

ScaleControls
IsWhen

ScaleContro

Set to scNo (0) to disable scaling of
controls on the form. Set to scAtLoad
(1) to cause controls to be scaled when
you first load the form, and then never
again. Set to scYes (-1) (the default) to
always scale controls in relation to the
shape of the form.

ScaleForm Boolean

Set to False to disable scaling of the
form to match its original screen size.
This doesn’t disable scaling of controls
when you resize the form at runtime,
only the automatic scaling of the form to
match its original shape.

ScaleFonts Boolean

Set to False to disable scaling of fonts on
the screen (the default value is True).

TwipsPerPixelX | Long

(Read-only) Returns the ratio between
twips and pixels in the horizontal
direction for the current screen driver.
Can be used to convert from twips to
pixels, when necessary.

TwipsPerPixelY | Long

(Read-only) Returns the ratio between
twips and pixels in the vertical direction
for the current screen driver. Can be

Scale and Resize Your Access Forms

Page 14

From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8
by Ken Getz, Paul Litwin, and Mike Gilbert
©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

used to convert from twips to pixels,
when necessary.

WidthInTwips Long (Read-only) Returns the current width,
in twips, of the associated form.
Version String Returns a version identification string.

(New in this version. Not in the book.)

Table 2: FormResize Methods

METHOD PARAMETER DESCRIPTION
S
Center Center the form on the screen.
(New—not in the book.)
RescaleForm Forces a recalculation of control and
font sizes. If you change a property
manually (ScaleFonts or
ScaleColumns, for example) you’ll
want to call this method to force a
recalc of the form’s display.
SetDesignCoords Width, Optionally, call this method to
Height, indicate the original, design-time
DPIX, screen coordinates. If you don’t call
DPIY this method, FormResize will assume

that the design-time coordinates
match the runtime coordinates, and no
automatic scaling at load-time will
occur. Use frmScreenlinfo to gather
the necessary information for this
method call at design time. (Width
and Height represent coordinates of
the screen, and DPIX and DPIY
represent the dots/inch in the
horizontal and vertical directions.).

Scale and Resize Your Access Forms
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

Page 15

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

Managing Features on a Control-by-Control
Basis

In some cases, you won’t want to scale each and every control on a form.
You may want to scale some controls but leave others the same size they
were when you created them, no matter how the end-user mangles your
form’s shape. In order to “turn off” scaling, you have several options:

* You can set the FormResize object’s ScaleControls property to
scNo at design time. No controls will ever scale.

* You can set the FormResize object’s ScaleControls property to
scNo at any time while the form is running. Doing this will
temporarily turn off scaling of the controls on the form, as the
user resizes the form. (Change the property back to scYes when
you want scaling to start again.)

* You can leave the ScaleControls property alone but modify
properties of each individual control for which you’d like to
disable scaling.

This section provides the details for taking the third option and adds some
new functionality along the way, as well.

Properties of the ControlResize Object

In order to do its work, the FormResize object keeps track of information
about each control on the form with which it’s associated. To manage the
information, it uses the ControlResize class to create a ControlResize object
corresponding to each control. This object keeps track of items such as the
control’s name, its coordinates, and its parent (a FormResize object). Most
of the object’s public methods and properties are public only so that they
can be used from the parent object, but it does include some properties that
you’ll find useful. Table 3 describes each of the properties of the
ControlResize object that you’re likely to use.

Table 3: Useful Properties of the ControlResize Object

Scale and Resize Your Access Forms Page 16
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

PROPERTY DATA TYPE

DESCRIPTION

Floatlt ControlFloat: cfRight,
cfBottom, cfBoth,
cfNone*

As you resize the form, the code
can float the control towards the
right, bottom, or both. (The size
won’t change.) The distance
between the upper-left corner of
the control and the specified edge
of the form will remain constant.

Scalelt ControlScale: csYes,
csNo, csDefault

As you resize the form, the code
can both float and size the control
based on the size of the form (this
is the standard rescaling
behavior). You can control this
on a control-by-control basis,
using this property. If you specify
csDefault, the control will resize
based on the settings you’ve
made for the entire form.
Otherwise, you can disable or
enable scaling for each particular
control.

Sizelt ControlSize: czRight,
czBottom, czBoth,
czNone

As you resize the form, the code
can size the control towards the
right, bottom, or both (the upper-
left corner of the control won’t
move). The distance between the
upper-left corner of the control
and the specified edge of the form
will remain constant.

ControlResize’s class module.

*Default values marked in bold. All values are members of Enums, in

As you can see from Table 3, you have more flexibility than simply
controlling which controls scale. If you want to control the scalability of
individual controls, you can set the Scalelt property of any control, like

this:

Scale and Resize Your Access Forms

Page 17

From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

nfr is a FornResi ze object, previously
i nstanti ated.
nfr.Control s("cndCancel "). Scalelt = csNo

If you want to programmatically control scaling, sizing, or
floating, you must use the Controls collection of the
FormResize object, not the form itself. Controls in the
form’s Controls collection don’t have Scalelt, Sizelt, and
Floatlt properties—only objects based on the
ControlResize class have those properties. Members of the
FormResize’s Controls collection are based on the
ControlResize class, so you'll need to use that Controls
collection instead.

Using code as in the previous fragment, you’ll be able to manage, on
a control-by-control basis, whether any specific control should scale to
match the size of the form.

You can also declare a variable of the correct type, and then set it to
be the control you want to work with, like this:

Dim x As ADHResi ze2K. Cont r ol Resi ze
Set x = nfr.Control s("cndCancel ")
x.Floatlt = True

& The ControlResize Scalelt property always overrides the
FormResize object’'s ScaleControls property. Even if you've
set the ScaleControls property to False, setting an
individual ControlResize object’s Scalelt property to scYes
will cause that control to be scaled.

In addition to the Scalelt property, the ControlResize class also
provides two other useful properties that aren’t really linked to scaling at
all. Using the Floatlt and Sizelt properties, you can control the positioning
and sizing of controls in relation to the lower right-hand corner of the form.

For example, Figure 5 shows two instances of the same sample form
(frmFloatAndSize, from the sample project). As the form grew larger, the
controls didn’t scale—they actually moved, or resized, to fit the larger
space. What’s the difference between scaling, floating, and sizing?

* When scaling, the controls’ left and top coordinates change, and
normally, fonts change size, as well. (You can control this using
the FormResize object’s ScaleFonts property.) You can control

Scale and Resize Your Access Forms Page 18
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

when scaling occurs: always, never, or only when the form first
loads.

* When sizing, the controls’ left and top coordinates stay fixed, but
the width and height change to maintain a constant offset from
the bottom and right edge of the form. You can control the
direction of the sizing towards the bottom, towards the right,
neither, or both.

* When floating, the controls’ top and left coordinates change to
maintain a constant offset from the bottom and right edge of the
form, but the width and height of the controls remain fixed. You
can control the direction of the floating towards the bottom,
towards the right, neither, or both.

In Figure 5, all the controls include one or more of these settings.
The form’s Load event includes the following code, which sets up all the
values (mfr is the module-level variable that refers to the FormResize
object):

Scale and Resize Your Access Forms Page 19
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

nfr.Controls("txtMain").Sizelt = czBoth
nfr.Controls("cndTest").Floatlt = cfBoth
nfr.Controls("cndOK").Floatlt = cf R ght
nfr. Control s("cndCancel ").Floatlt = cfRi ght
Wth nfr.Control s("I bl Status")

.Floatlt = cfBottom

.Sizelt = czRi ght

End Wth
B Demonstrate Float and Size =] B3
|This is & ket box Ok |
H Demonstrate Float and Size (- [O] x| Cancel |
This is a bext boo K

i

Cancel

Test

L

Bottom Right

Test
= Bottam Right |

Figure 5: Using the Floatlt and Sizelt properties, you can
cause controls to float and size in relation to the lower-
right corner of the form.

Looking carefully at the property settings, you can work through the
details:

» The form sets the ScaleControls property for the associated
FormResize object to be scNo, so the controls don’t scale to fit
the sized form. The ScaleForm property is set to False, as well,
so the form doesn’t attempt to scale to fit the current screen
resolution at load time.

» The text box (txtMain) sizes in both directions as you resize the
form. Its upper-left corner doesn’t move, but its width and height
change.

Scale and Resize Your Access Forms Page 20
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

* The Bottom Right command button (cmdTest) floats in both
directions. Its upper-left corner moves to the right and down, as
you resize the form. Its width and height never change.

* The two command buttons (cmdOK and cmdCancel) float only
to the right. This means that their Left properties change but not
their Top properties. Because they’re floating, their width and
height never change.

* The sunken label (IblStatus) at the bottom of the form floats with
the bottom of the form (that is, its Top property changes, but not
its Left property). In addition, it floats with the right edge of the
form (that is, its Width property changes, but not its Height).

As you might guess, using these control-level properties gives you
immense flexibility in the way you create forms. Even if you use none of
the scaling features provided by the FormResize class, being able to float
and size controls based on the changes made to the size of the form can
make your life as a programmer simpler.

Using the Tag Property to Manage Scaling

Because you’re most likely to want to set the Floatlt, Sizelt, and Scalelt
properties for your controls once and never modify them again, you may
want a way to set these properties at design time. That way, you needn’t
write any code to set the properties at runtime. Unfortunately, controls
don’t normally have Floatlt, Sizelt, or Scalelt properties. To work around
this problem, we’ve set up the resizing code so that you can specify these
properties as part of the Tag property of each control.

The class that manages the scaling of each individual control
includes code that checks the Tag property of each control as it’s
initializing information about the form and keeps track of the values it finds
there. Using the standard technique described in Chapter 7 of Access 2000
Developer’s Handbook, VVolume I, (the same chapter number in Access 97
Developer’s Handbook), the code looks for portions of the Tag property
containing text like this:

Scal el t =Yes; Fl oat | t =Yes
That is, the code looks for a property name, an equal sign, and a value for
the property. If you set up the Tag property for each affected control this

Scale and Resize Your Access Forms Page 21
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

way, you needn’t write any code in the form’s Load event procedure, as
shown in the previous section. The sample form, frmFloatAndSizeTag, uses
this technique to produce the same results as the sample shown in the
previous section. For a complete list of tag names and possible values, see

Table 4.

Table 4: Possible Tag Names and Values for Sizing,
Scaling, and Floating Individual Controls

TAG NAME

POSSIBLE TAG VALUES

DESCRIPTION

Floatlt

Right, Bottom, Both,
None*

As you resize the form, the code
can float the control towards the
right, bottom, or both. (The size
won’t change.) The distance
between the upper-left corner of
the control and the specified
edge of the form will remain
constant.

Sizelt

Right, Bottom, Both, None

As you resize the form, the code
can size the control towards the
right, bottom, or both (the
upper-left corner of the control
won’t move). The distance
between the upper-left corner of
the control and the specified
edge of the form will remain
constant.

Scalelt

Yes, True, On, No, False,
Off, Default

As you resize the form, the code
can both float and size the
control based on the size of the
form (this is the standard
rescaling behavior). You can
control this on a control-by-
control basis using this tag
value. If you specify Default,
the control will resize based on
the settings you’ve made for the
entire form. Otherwise, you can

Scale and Resize Your Access Forms
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert
©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

Page 22

disable or enable scaling for
each particular control.

*Default values marked in bold.

Steps to Successful Scaling

If you’re upgrading to the current version of this technology from a
previous version of this book, you’ll find that the resizing algorithm used in
this book works much better than it did in previous versions. We no longer
see the troublesome round-off errors when resizing fonts that plagued
previous versions of the code.

Even though the code works better in this version, there are still
some rules you must follow to make it possible for this code to work:

Use TrueType fonts for each control you will scale. This code
will scale only the fonts in text box, combo box, list box, label,
command button, toggle button, and tab controls. Unfortunately,
the default font used in all controls is not scalable. You must
either modify your form defaults or select all the controls and
change the font once you’re finished designing. On the other
hand, beware of using fonts that won’t be available on your
users’ machines. All copies of Windows 95 and NT ship with
Arial and Times Roman fonts; choosing one of these for your
buttons and labels and list, combo, and text boxes guarantees a
certain level of success. Of course, all the Office applications use
the Tahoma font, and you may wish to use this font in order to
“blend in” with the rest of Office.

Do not design forms at 1280x1024 and expect them to look good
at 640x480. By the time forms get scaled that far down, they’re
very hard to read. Using 800600 or 1024x768 for development
should provide forms that look reasonable at all resolutions.

The current implementation of this code cannot resize subforms
shown as datasheets. We tried vainly to accomplish this—there’s
simply too much information we need that isn’t available about
the row and column sizes to make this possible. You should be
aware that the contents of datasheets will not scale, although their
physical size will.

Scale and Resize Your Access Forms Page 23
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

* Do not attempt to mix the AutoCenter property with the
ScaleForm property of a FormResize object set to True. The
AutoCenter property will attempt to center the form before it’s
scaled and will cause Access to place the form somewhere you
don’t expect it to be.

» Make labels and text boxes a bit wider than you think you
actually need. Windows doesn’t always provide the exact font
size the code requests, so you’re better off erring on the generous
side when you size your controls.

Scaling Your Own Forms

To include this functionality in your own applications, follow these steps:

1. Copy ADHResize2K.mde (or ADHResize97.mde, if you’re using
Access 97) to a convenient location.

2. In your database, use the Tools|References menu to set a
reference to the appropriate MDE file. You’ll need to use the
Browse button to find the file—it won’t appear on the list
automatically.

2. Ensure that all the fonts on your form are scalable. (Use
TrueType fonts if possible, since they’re all scalable.)

3. Inthe Declarations area of the form module for each form you’d
like to scale, declare an object variable to refer to the FormResize
object that will mirror your form (the actual name doesn’t matter,
of course):

Private frnmResi ze As ADHResi ze2K. For nResi ze
O

Private frnResi ze As ADHResi ze97. For nResi ze

3. Inthe form’s Open event procedure, set your object variable to
be the result returned from calling the CreateFormResize method,
Then, set the object’s Form property to be the current form, like
this:

Scale and Resize Your Access Forms Page 24
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

Set frnmResi ze = ADHResi ze2K. Cr eat eFor nResi ze
Set frmResi ze. Form = Me

If you've been using the version of this code that’s provided
in the Access 2000 book, you have been using the New
operator to instantiate a new instance of the FormResize
class. This is difficult to do when creating an object from an
Access library, so this version includes the
CreateFormResize function to do that work for you.

4. If you intend to scale the form so that it appears proportional to
the screen, as it did when you designed it, you must also call the
SetDesignCoords method. Pass to the method the x- and y-
resolutions of the screen for which it was designed, along with
the logical dots-per-inch values for the horizontal and vertical
dimensions of your screen. (Use frmScreeninfo to generate this
line of code.)

Private Sub Form Qpen(Cancel As Integer)
Instantiate the class to handle all resizing.
Set frmResize = ADHResi ze2K. Cr eat eFor nResi ze

Tell the new object what form you want
it to work with,
Set frmResize. Form= M

Tell the object the size of the screen
on whi ch you designed the form and the
dots/inch in that screen resol ution.
Repl ace these four integers with your own
val ues. Use frnBScreenlnfo to cal cul ate
t hese for you.
If you don't call this nethod at all,
the code will display the formas you
originally designed it, with no scaling

' at load tine.

Call frnResize. Set Desi gnCoords(1024, 740, 96, 96)

End Sub

5. If you’d like, set any/all of the optional FormResize properties,
such as ScaleControls, ScaleForm, ScaleFonts, or ScaleColumns.
(See Table 1.)

6. If you want to control floating, scaling, or sizing of individual
controls, either set their Tag properties appropriately, or write

Scale and Resize Your Access Forms Page 25
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

code in the form’s Load event to handle these individual
properties. (See the sample forms, frmFloatAndSize, and
frmFloatAndSizeTag).

é Code in the FormResize class sets the OnResize and
OnLoad event properties of your form to be “[Event
Procedure]”. If you have other values in those properties
already, they will be overwritten at runtime. That is, if you're
calling a macro or a function from those properties, the
macro or function won’t be called. Instead, the code in the
FormResize class will run. If you're already calling an event
procedure from the Resize or Load event (that is, you've
set the OnLoad and OnResize properties to be “[Event
Procedure]”, your code will run first, and then the code in
the FormResize class will run.

Scale and Resize Your Access Forms Page 26
From Access 2000 Developer’s Handbook, Volume | (Desktop Edition)

ISBN 0-7821-2370-8

by Ken Getz, Paul Litwin, and Mike Gilbert

©Sybex, Inc. All rights reserved.

You may not distribute this document without express permission of the authors. Visit
http://www.developershandbook.com for more information on the books and the authors.

	Scale and Resize Your Access Forms
	
	Disclaimer

	Automatically Resizing Forms
	Understanding Screen Resolutions
	Scaling Forms as They Load
	Necessary Information

	Using FormResize
	Working with FormResize Properties

	Managing Features on a Control-by-Control Basis
	Properties of the ControlResize Object
	Using the Tag Property to Manage Scaling
	Steps to Successful Scaling
	Scaling Your Own Forms

